ONE CHEESY TORTILLA
CHIP,

ONE CHEESY TORTILLA
CHIP...

FIVE CHEESY TORTILLA |
CH1PS..,

- "

BYGHT CHEESY ToRTILLA
CHIPS,,,

: ©2009 BIll Amend / Glst. by Universal Prass Syndicale

Name

TWo CHEESY TORTILLA |

CIPS,,,

THREE CHEESY TORTILLA
© . CHiPS,,,

MATH GEEKS SHoULDN'T BE ALLOWED
ANYWHERE NEAR CERTAIN FooDS,

WHAT'S WRONG WITH
FIBONACHOS T

THERE'RE ONLY 12
LEFT...NowW WHAT?

FOXTROT © 2009 BILL AMEND. REFRINTED WITH PERMISSION OF LINIVERSAL UCLICK.

ALL RIGHTS RESERVED.






Heres Lepkirg ot Eochi”
1 by A Gellas

...__m,soaﬂ\ 2010

CHAPTER EIGHT

GOLD FINGER

m#aum with me in his lounge at home, Eddy Levin handed me a sheet

of white paper and asked me o write out my name in capital letters.

Levin, who is 75 years old and hasa donnish face with gray stubble and a
long forehead, used to be a dentist. He lives in north London on a street
that is the epitome of prosperous and conservative suburban Britain. I
took the paper and wrote: ALEX BELLOS.

Levin then picked up a stainless steel instrument that looked like a
small claw with three prongs. With a steady hand he held it up to the
paper and started to analyze my script. Tle lined up the instrument to the

i F,in my first name with the concentration of a Tabbi preparing a circumci-
sion. ,

“Pretty good,” he said.

Levir's claw is his own invention. The three prongs are positioned in
such a way that the tips of the prongs stay on the same line and in the same
ratio to one another when the claw opens out. He designed the instrument

<o that the distance between the middle prong and the prong above itis

always 1.618 times the distance between the middle prong and the prong
below it: Because this number is better known as the golden mean, he calls
his tool the Golden Mean Gauge, (Other synonyms for 1.618 include the
golden ratio, the divine prop ortion and @, or phi} Levin put the gauge on
my letter E so that the tip of one claw was on the top horizontal bar of the
E, the middle tip was on the middle bar of the E and the bottom tip was on
the bottom bar. I had assumed that when I wrote a capital B 1 positioned
the middle bar equidistant between the top and the bottom, but Levins
E gauge showed that I was subconsciously placing the bar slightly above
| halfway—in such a way that it divided the height of the letter into two
sections with lengths of ratio 1 10 1.618. Though [ had scribbled my name
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without any thought, I had adhered to the golden mean with uncanny
precision.

Levin smiled and moved on to my S. He readjusted the gauge s0 that
the side points touched the topmost and bottommost tips of the letter,
and, to my farther amazement, the middle one coincided exactly with the
S line as it curved.

“Spot ony Levin said calmly. “Everybody’s handwriting is in the golden
proportion?

. The golden mean is the number that describes the precise ratio when a

line is cut into two sections in such a way that the proportion of the entire
line to the larger section is equal to the proportion of the larger section to
the smaller section. In other words, when the ratio of A + B to A ig equal
to the ratio of A to B:

A ., B

A line divided into two by the golden ratio is known as a golden sec-
tion, and the ratio, phi, between Jarger and smaller sections can be calcu-
lated as (1+ 4/5)/2. This is an irrational mumber, whose decimal expansion

begins:
1.61803 30887 49894 84820. ..

The Greeks were fascinated by phi. They discovered it in the five-
pointed star, or pentagram, which was a revered symbal of the Pythago-
rean Brotherhood. Buckid called it the “sytreme and mean ratio” and he
provided a method to construct it with compass and straightedge. Since
at least the Renaissance, the number has intrigued artists as well as math-
ematicians. The major work on the golden ratio was Luca Pacioli’s The
Divine Proporiion in 1509, which listed the appearance of the number in
many geometric constructions and was illustrated by Leonardo da Vinct.
Pacicli concluded that the number was & MEsSage from God, a source of
secret knowledge about the inmer beauty of things.

Mathematical interest in phi comes from how it is related to the most
famous sequence in math: the Fibonacci sequence. This sequence starts
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“H,

L The pentagram,  mystical m._\s.g_ singe andient times, contains the gelden ratio.

with 0, 1 in which each subsequent term is the sum of the two previous
Lo terms:

_ 0,1,1,2,3,5,8, 13, 21, 34, 55, 89, 144, 233,377 ...
Here is how the numbers are found:

i 0+1=1
o 1+1=2
1+2=3
2+3=5
3+5=8
54+8=13

Before 1 show how phi and Fibonacci are connected, let’s investigate
the sequence. The natural world hasa predilection for Fibonacci numbers.
If you look in a garden, you will discover that for most flowers the nurmber
of petals is a Fibonacci number. 'The lily and the iris have three petals, the
pink and the buttercup five, the delphinium eight, the marigold 13, the
) aster 21-and daisies either 55 or 89. The flowers may not always have these
1 numbers of petals, but the average number of petals will be a Fibonacci
number, For example, there are usually three leaves on a stem of clover,
a Fibonacci number. Only seldom do clovers have four leaves, and that is
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why we consider four-leaf clovers special. They are rare because 4 is not 2
Fibonacci number,

Fibonacci numbers also occur in the spiral arrangements on the
surfaces of pinecones, plneapples, cauliflower and sunflowers. In these
ingtances, you can count spirals clockwise and counterclockwise. The
numbers of spirals you can count in both directions are consecutive Fibo-
nacci numbers. Pineapples usually have 5 and 8 spirals, or 8 and 13 spirals.
Spruce cones tend to have 8 and 13 spirals. Sunflowers can have 21 and 34,
or 34 and 55 spirals—although examples as high as 144 and 233 have been
found. The more seeds there are, the higher up the sequence the spirals
will go.

The Fibonacci sequence is so called because the terms appear in
Fibonacci’s Liber Abaci, in a problem about rabbits. The sequence only
gained the name, however, more than 600 years after the book was pub-
lished when, in 1877, the number theorist Edouard Lucas was studying
it, and he decided to pay tribute to Fibonacci by naming the sequence
after him.

The Liber Abaci set up the sequence like this: Say that you have a pair
of rabbits, and after one month, the pair gives birth to another pair. If every
adult pair of rabbits gives birth to a pair of baby rabbits every month, and
it takes one month for the baby rabbits to become adults, how many rab-
bits are produced from the first pair in a year?

The answer is found by counting rabbits tnonth by month. In the first
month, there is just one pair. In the second there are two, as the original
pair has given birth to a pair. In the third month there are three, since
the original pair has again bred, but the first pair are only just adults.
In the fourth month the two adult pairs breed, adding two to the popu-
lation of three. The Fibonacci sequence is the month-on-month total of
péirs:

Total pairs
First month: 1 adult pair 1
Second month: 1 adult pafrand 1 bahy pair 2
Thizd month: 2 adutt pairs and 1 haby pair 3
Fourth month: 3 adult pairs and 2 baby pairs 5
Fifth menth: 5 adult pairs and 3 baby paits 8

Sixth menth: 8 adult pairs and 5 baby pairs 13
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An important feature of the Pibonacci sequence is that it is recurrent,
which means that each new term is generated by the values of previous
terms. This helps explain why the Fibonacci numbers are so prevalent in
natural systems. Many life-forms grow by a process of recurrence.

In addition to its association with fruit and promiscuous rodents, the
Fibonacci sequence has many absorbing mathematical properties. Listing
the first 20 numbers will help us see the patterns, Each Fibonacci number
is traditionally written using an F with a subscript to denote the position
of that number in the sequence:

F, O

F, 1 F, 8 . F, & F, 987
B, 1 13 B, 144 B, 1597
B, 2 F, 21 F, 233 F, 2584
F, 3 F, 34 F, 377 F, 4181
B 5 B, 55 F, 610 E, 6765

5 10 15 20

Upon closer examination, we sce that the sequence regenerates itself
in many surprising ways. Look at F,, F, F, in other words, every third
F-number, They are all divisible by 2. Compare this with F,, ¥, F,, or
every fourth F-number—they are all divisible by 3. Every fifth F-number
is divisible by 5, every sixth F-number divisible by 8, and every seventh
number by 13. The divisors are precisely the F-numbers in sequence.

Another amazing example comes from 1/F,, or 1/89. This number is
equal to the sum of :

.0

01

001

.0002
00003
000005
0000008
00060013
.000000021
0000000034
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So, the Fibonacci sequence pops its head up again.

Here’s another interesting mathematical property of the sequence.
Take any three consecutive F-numbers. The first number multiplied by the
third number is always different by 1 from the second number squared:

For F,F,F:
B, xF,=F,xF -1 (24=25-1)
ForF,F,F.:
F,xFE =F xF+1 (65=64+1)

) For F m_s, m..su

18?

F X F,=F, xF ~1 (17:480,760=17,480,761 ~1)

This property is the basis of a centuries-old magic trick, in which it is
possible to cut up a square of 64 unit squares into four pieces and reas-
semble them to make a rectangle of 65 pieces. Here's how it's done: draw a
square of 64 unit squares. Tt has a side length of 8. In the sequence, the two
F-numbers preceding 8 are 5 and 3. Divide the square up using the lengths
of 5 and 3. The pieces can be reassembled to make a rectangle with sides
the length of 5 and 13, which has an area of 65:

/
f ~
/ -8

' 5%13=465

ExB =64

The trick is explained by the fact that the shapes are not a perfect fit.
Though it is not that obvious to the naked eye, there is a long thin gap
along the middle diagonal with area of one unit.

In the early seventeenth century, the German astronomer Johannes
Kepler wrote that “as 5 is to 8, so 8 is to 13, approximately, and as 8 is to
13, so 13 is to 21, approximately” In other words, he noticed that the ratios
of consecntive F-numbers were similar. A century later the Scottish math-
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ematician Robert Simson saw something even more incredible. If you take
the ratios of consecutive B-numbers, and put them in the sequence

1°1'2°3°5” 8713721734 "
or {to three decimal places)

1,2,1.5,1.667,1.6,1.625, 1.615, 1.619, 1.618 . ..

the values of these terms get closer and closer to phi, the golden ratio.

In other words, the golden ratio is approximated by the ratio of con-
secutive Fibonacci numbers, with the approximation increasing in accu-
racy further down the sequence.

Now let’s continue with this line of thought and consider a Fibonacci-
like sequence, starting with two random numbers, and then adding con-
secutive terms to continue the sequence. So, say we start with 4 and 10; the
following term will be 14 and the one after that 24, Our example gives us:

4,10, 14, 24, 38, 62, 100, 162, 262,424 . ..

Look at the ratios of consecutive terms; : 4.

47 10° 147 247 387 627 1007 162 262 **°

or
2.5, 1.4, 1.714, 1.583, 1.632, 1.612, 1.620, 1.617, 1.618 . ..

'the Fibonacci recurrence algorithm of adding two consecutive terms
in a sequence to make the next one is so pawerful that whatever two num-
bers you start with, the ratio of consecutive terms always converges to phi.
I find this a totally enthralling mathematical phenomenon.

The ubiquity of Fibonacci mumbers in nature means that phi is also ever-
present in the world. This brings us back to the retired dentist, Eddy
Levin. Barly in his career he spent a lot of time making false teeth, which
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he found a very frustrating job, because no matter how he arranged the
teeth he could not make a person’s smile lock right. “I sweated blood and
tears,” he said. “Whatever I did the teeth looked artificial” But at around
that time Levin started attending a math and spirituality class, where he
learned about phi. Levin was made aware of Pacioli’s The Divine Propor-
tion and was Inspired. What if phi, which Pacioli claimed revealed true
beauty, also held the secret of divine dentures? It was 2 A.M. and Levin
rushed to his study. “I spent the rest of the night measuring teeth” Levin
scoured through photographs and discovered that in the most attractive
sets of teeth, the big top front tooth (the central incisor) was wider than
the one next to it {the lateral incisor) by a factor of phi. The lateral incisor
was also wider than the adjacent tooth (the canine) by a factor of phi. And
the canine was wider than the one next to it (the first premolar) by a fac-
tor of phi. Levin was measuring not the size of actual teeth, but the size of
pictures of teeth when taken head-on. Still, he felt he had made a historic
discovery: the beauty of a perfect smile was prescribed by phi.

“I was very excited,” remembered Levin. At work, he mentioned his
findings to colleagues, but they dismissed him as an oddball. He contin-
ued to develop his ideas nonetheless, and, in 1978, he published an article
expounding them in the Journal of Prosthetic Dentistry. “From then, peo-
ple got interested in it he sald. “Now there is not a lecture that is given
on {dental] aesthetics that doest’t include a section on. the golden propor-
tion” Levin was using phi so much in his work that in the early 1980s
he asked an engineer to design him an instrument that could tell him if
two teeth were in the golden proportion. The result was the three-pranged
Golden Mean Gauge. He still sells it to dentists around the world.

Levin told me his gauge became more than a work tool, and he started
to measure objects other than teeth. He found phi in the patterns of flow-
ers, in the spread of branches along stems, and in leaves along branches.
He took it with him on holiday and found phi in the proportions of build-
ings. He also found phi in the rest of the human body: in the length of
knuckles to fingers and in the relative positions of the nose, teeth and chin.
Additionally, he noticed that most people use phi in their handwriting,
just as he had shown in mine. ,

The more Levin looked for phi, the more he found it. “I found so
many coincidences, I started to wonder what it was all about” He opened
his laptop and showed me slides of images, each with the three points of
the gauge showing exactly where the ratio was to be found. I saw pictures
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of butterfly wings, peacock feathers and animal colorings, the ECG read-
ing of a healthy human heart, paintings by Mondrian and a car.

‘When a rectangle is constructed so that the ratio between its sides is phi,
you get what is known as a “golden rectangle,” as shown opposite top left.
This rectangle has the convenient property that if we were to cut it ver-
tically so that one side is a square, then the other side is also a golden
rectangle. The mother gives birth to a baby danghter. If you continue this
process you create granddanghters, great-granddaughters, and so on, ad
infinitum. Now, lefs draw a quarter circle in the Jargest square by using
a compass, placing the point at the bottom right corner and moving the
pencil from one adjacent corner to the other. Repeat in the second largest
square with the compass point at the bottom left corner, with the pencil
continuing the curve for another quarter circle, and then carry on with
the smaller squares. The curve is an approximation of a logarithmic spiral.

A true logarithmic spiral will pass through the same corners of the
same squares, yet it will wind itself smoothly, unlike the curve in the dia-
gram, which will have small jumps in curvature where the sections of the
quarter circle meet. In a logarithmic spiral, a straight line from the center
of the spiral-—the “pole”—will cut the spiral curve at the same angle at all
points, which is why Descartes called the logarithmic spiral an “equiangu-
lar spiral’ !

et e
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Golden rectanghe and logarithmic spiral.

The logarithmic spiral is one of the most bewitching curves in math,
In the seventeenth century, Jakob Bernoulli was the first mathematician
to thoroughly investigate its properties. He called it the spira mirabilis, the
wonderful spiral. He asked to have one engraved on his tombstone, but the
sculptor engraved a different sort of spiral by mistale.

The fundamental property of the logarithmic spiral is no matter how
much it grows, it never changes shape. Bernoulli expressed this on his
tombstone with the epitaph Eadem mutata resurgo, or “Although changed,
I shall arise the same” The spiral rotates an infinite number of times before
reaching its pcle. ¥ you took a microscope and looked at the center of a
logarithmic spiral you would see the same shape that you would see if
the logarithmic spiral on this page were continued until it was as big as
a galaxy and you were looking at it from a different solar system. In fact,
many galaxies are in the shape of logarithmic spirals. Just like a fractal, a
logarithmic spiral is self-similar: that is, any smaller piece of a larger spiral
is identical in shape to the larger piece.

The most stunning example of a logarithmic spiral in nature is the
nautilus shell. As the shell grows, each successive chamber is larger, but
has the same shape as the chamber before. The only spiral that can accom-
modate chambers of different sizes with the same relative dimensions is
Bernowlli’s spira mirabilis.

Nautilus shell.
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As Descartes noted, a straight line from the pole of a logarithmic spiral
always cuts the curve at the same angle, and this feature explains why the
spiral is used by peregrine falcons when they attack their prey. Peregrines
do not swoop in a straight line, but rather bear down on prey by spiral-
ing around it In 2000, Vance Tuacker of Duke University figured out why
this is so. Falcons have eyes at the sides of their heads, so if they want to
look in front of themselves, they need to turn the head 40 degrees. Vance
tested falcons In a wind tunnel and showed that with the head at such an
angle, the wind drag on a falcon is 50 percent greater than it would be if
the falcon was looking straight ahead. The path that lets the bird keep its
head in the most aerodynamic position possible, while also enabling it to
constantly look at the prey at the same angle, is a logarithmic spiral.

When a plant grows, it needs to position its leaves around the stem in such
a way as to maximize the amount of sunlight that falls on each leaf. That’s
why plant leaves aren’t directly above each other; if they were, the bottem
ones would get no sunlight at ell.

As the stem goes higher, each new leaf appears at a fixed angle around
the stem from the previous leaf. 'The stem sprouts a leaf at a predeter-
mined rotation. What is the fixed angle that maximizes sunlight for the
leaves, the angle that will spread out the leaves around the stem so that
they overlap as little as possible? The angle is not 180 degrees, or a half
turn, because the third leaf would be directly above the first. The angle is
not 50 degrees, or & quarter turn, because if this were the case, the fifth
leaf would be directly over the first-—and also, the first three leaves would
be using only one side of the stem; this would be a waste of the sunlight
available on the other side. The angle that provides the best arrangement
is 137.5 degrees, and the diagram opposite shows where the leaves will
be positioned if successive leaves are always separated by this angle. The
first three leaves are positioned well apart from one another. The next
two, leaves four and five, are separated by more than 50 degrees from their
nearest leaves, an angle that still gives them a good amount of room. The
sixth leaf is at 32.5 degrees from the first. This is closer to a leaf than any

_previous one, which it has to be since there are more leaves, yet the dis-
tance is still a pretty wide berth.

The angle of 137.5 degrees is known as the golden angle. It is the angle
we get when we divide the full rotation of a circle according to the golden
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How leaves spiral up 2 stem.

ratio. In other words, when we divide 360 degrees into two angles such
that the ratio of the larger angle to the smaller angle is phi, or 1.618. The
two angles are 222.5 degrees and 137.5 degrees, to one decimal place. The
smaller one is known as the golden angle.

The matheratical reason why the golden angle produces the best leaf
arrangement arcund 2 stem is linked to the concept of irrational num-
bers, which are those numbers that cannot be expressed as fractions. If
an angle is an irrational number, no matter how many times you turn it
around a circle you will never get back to where you started. It may sound
Orwellian, but some irrational numbers are more irrational than others.
And no number is more irrational than the golden ratic. {There's a brief
explanation why in Appendix 6 at the wehsite for this book.)

The golden angle explains why you generally find that on a plant stem,
the number of leaves and number of turns before a leaf sprouts more or
less directly above the first one is a Fibonacci number. For example, roses
have 5 leaves every 2 turns, asters have 8 leaves for every 3 turns and
almond trees have 13 leaves for every 5 turns. Fibonacci numbers occur
because they provide the nearest whole-number ratios for the golden

-angle. If a plant sprouts 8 leaves for every 3 turns, each leaf nccurs every

% turn, or every 135 degrees, a very good approximation of the golden
angle.

'The unique properties of the golden angle are most strikingly seen in
seed arrangements. Imagine that a flower head produces seeds from the
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center point at a fixed angle of rotation. When new seeds emerge, they
push the older seeds further out from the center. The following three dia-
grams show the patterns of seeds that emerge with three different fixed
angles: just below the golden angle, the golden angle, and just above.

Angle = 137.3 degrees Angle = 137.5 degrees Angle = 157.7 degrees
Just under golden angle The golden angle Just over golden angle

What is surprising is how a tiny change in the angle can cause such
a huge variation in the positions of the seeds. At the golden angle, the
seed head is a mesmerizing pattern of interlocking logarithmic spirals. It is
the most compact arrangement possible. Nature chooses the golden angle
because of this compactness—the seeds are bound together more closely
and the organism will be stronger because of it.

- . -

In the late nineteenth century the German Adolf Zeising most forcefully
put forth the view that the golden proportion is beauty incarnate, describ-
ing the ratio as a universal Jaw “which permeates, as a paramount spiritual
ideal, all structures, forms and proportions, whether cosmic or individual,
organic or inorganic, acoustic or optical; which finds its fullest realization,
however, in the human form” Zeising was the first person to claim that
the front of the Parthenon is in the shape of a golden rectangle. In fact,
there is no documentary evidence that those in charge of the architectural
project, who included the sculptor Phidias, used the golden ratio. Nor,
if you look closely, is the golden rectangle a ?.mnwmm fit. The edges of the
pedestal fall outside, Yet it was Phidias’s connection to the Parthenon that,
around 1909, inspired the American mathematician Mark Barr to name
the golden ratio phi.

Despite the eccentric tone of Zeising’s work, he was taken seriously by

GOLD FINGER 207

Gustav Fechner, one of the founders of experimental psychology. In order
to discover if there was any empirical evidence that humans thought the
golden rectangle more beautiful than any other sort of rectangle, Fechner
devised a test in which subjects were shown a number of different rect-
angles and asked which they preferred.

Fechner’s results appeared to vindicate Zeising. The rectangle closest
to a golden one was the top choice, favored by just over a third of the
sample group. Even though Fechner’s methods were crude, his rectangle
testing began a new scientific field—the experimental psychology of art—
as well as the narrower discipline of “rectangle aesthetics” Many psycholo-
gists have conducted similar surveys on the attractiveness of rectangles,
which is not as absurd as it sounds. If there were a “sexiest” rectangle, this
shape would be of use to the designers of commercial products, Indeed,
credit cards, cigarette packets, and books often approach the proportions
of a gelden rectangle. Unfortunately for phi-philes, the most recent and
detailed piece of research, by a team led by Chris McManus of University
College London, suggests that Fechner was wrong, The 2008 paper states
that “more than a century of experimental work has suggested that the
golden section actually plays little normative role in subjects’ preferences
for rectangles” Yet the authors did pot conclude that analyzing rectangle
preference is a waste of time, Far from it. They claimed that while no one
rectangle is universally preferred by humans, there are important indi-
vidual differences in the aesthetic appreciation of rectangles that merit
further investigation.

Gary Meisner is a 53-year-old business consultant from Tennessee. He
calls himself the Phi Guy and sells merchandise on his website includ-
ing phi T-shirts and mugs. His best-selling product, however, is the Phi-
Matrix, a piece of software that creates a grid on your computer screen
to check images for the golden ratio. Most purchasers use it as a design
tool, to make cutlery, furniture and homes. Some customers use it for
financial speculation by superimposing the grid on graphs of indexes, and
using phi to predict future trends. “A guy in the Caribbean was using my
matrix to trade in oil, a guy in China was using it to trade in currencies,’
he said. Meisner was drawn to the golden mean because he is spiritual
and says it helped him understand the universe, but even. the Phi Guy
thinks that his fellow travelers can go too far. He is, for example, uncon-
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vinced by the traders. “When you look back on the market it is pretty
casy to find relationships that conform to phi” he said. “The challenge is
that looking backwards is completely different from loaking out the front
window” Meisner’s website has made him the go-to guy for every flavor of
phi aficionado. He told me that a month ago he received an e-mail from
an unemployed man who believed that the only way to get a job interview
was to design his résumé in the proportions of the golden ratio. Meisner
felt the man was deluded and took pity on him. He gave him some phi
design tips, but suggested that it would be more fruitful investing in more
traditional job-humting methods like business networking. “I got a letter
from him this morhing? Meisner blurted. “He said he has a job interview.
He is giving credit to the résumé’s new design!”

[ - *

Back in London I told Eddy Levin the story of the golden résumé as an
example of excessive eccentricity. Levin, however, didn't think it was
funny. In fact, he agreed that a phi-proportioned résumé was better than
a regular one. “It would look more beautiful, and so the reader would be
move attracted to it”

After 30 years of studying the golden ratio, Levin is convinced that
wherever there is beauty, there will be phi. “Any art which looks good, the
dominant proportions are the golden proportion,” he said. He knows this
is an unpopular viewpoint, as it prescribes a formula for beauty, but he
guarantees he will be able to find phi in any piece of art.

My instinctive reaction to Levin's phi obsession was one of skepti-
cism, For a start, I was unconvinced that his gauge was accurate enough
to measure 1.618 sufficiently precisely. It was not surprising to find a ratio
of “approximately phi” in a painting or a building, especially if you could
select which parts to choose. Also, since the ratio of consecutive Fibonaccl
numbers makes a good approximation to 1.618, whenever there is a grid
of 5% 3 or 8 X 5 or 13 x 8 and so on you will see a golden rectangle. Of
course the ratio will be a common one.

Yet there was something compelling about Levin's examples. I felt the
thrill of wonder with each new image he showed me. Phi really was every-
where. Yes, the golden ratio has always attracted cranks, but this in itself

did not mean that all the theories were crankish. Some very respectable -

academics have claimed that phi creates beauty, particularly in the struc-
ture of musical compositions. The argument that human beings might be
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drawn to a proportion that best expresses nafural growth and regeneration
does not seem too far-fetched.

It was a sunny summer’s day and Levin and I relocated to his garden.
We sat on two lawn chairs and sipped tea. Levin told me that the limerick
was a successful form of poetry because the syllables in its lines (8, 8, 5,
5, 8) are Fibonacci mumbers. Then I had an idea. I asked Levin if he knew
what an iPod was. He didn’t. T had one in my pocket and I took it out. It
was a beautiful object, I said, and according to his reasoning, it should
contain the golden ratio. .

Levin took my shiny white iPod and held it in his palm. Yes, he replied,
it was beautiful, and it should. Not wanting to mm.ﬁ my hopes up, he warned
me that factory-produced objects often do not follow the golden ratio per-
fectly. “The shape shifts slightly for the convenience of manufacture;” he
said. _

Levin opened his calipers and started measuring between all the sig-
nificant points.

“Ooh, yes” He grinned.

!

i

i
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The Storcage, PLEJIADES @ 1995 Akio Mizume. Jt

consists of & pentagrarms and 30 plastic reds. It is com-  of 180 rods. Iis design won the
merclally available at starcage@mbb.nifiy.com)

Starcage
and the works of Akio Hizume

& A fFhat do the mathematical concepts of lattice theory,
8./ W4 Penrose tiling, the golden mean, the Fibonacci
¥ V¥ sequence,. pentagonal symmetries and quasi-crystal
geometry have in common? They are major players in the works
of Japanese architect Akio Hizume. His genius and imagination
combine architecture and mathematics to create exciting new
shapes which reflect his fascination with structures found in
mathematics and nature. As he says, “I don’t separate both
science and art. Both are human arts.”l As a result, his sculp-
tures, architecture, and music evolve from these mathematical
ideas.

Imagine a group of congruent
pentagrams, each made from 5
rods, held together without the
use of any adhesive, wires or
strings, but by the tension
created by their interwoven
parts. The pentagrams lie flat
against one another until they
are hit or tossed onto a flat
surface, Then, as if by magic, a
3-dimensional geometric shape
emerges. In 1999, Hizume
created a Starcage? consisting
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~ starcage & the works of Akia Hizume

Starcage: MU-MAGAR! No. 5 @ 1999 Akio Hizume. It consisis of
180 rods aiso designed areund the symmetry of @ dodecahedron
using quasi-periodic patterns.

Silver Prize at the International Design
Competition in Osaka, Japan. His MU-
MAGARI Starcage also consists of 180 rods and

. is designed around the symmetry of a dodeca-

hedron using quasi-periodic’ patterns. All his
Starcages are totally self-supporting. In fact, he
has even created a self-standing Starcage
(BAMBOO HENGE No. 5), which allows people
to enter info its center. IHizume uses bamboo
rods to make his Starcages.

Utilizing the golden mean and TFibonacd
numbers, Hizume composed Fibonacci Kecak—
music consisting of only 9 periodic rhythms,
which repeat every 2000 years! (You can heara 7
minute clip from his piece by logging onto:
http:/ /homepagel.nifty.com/starcage/fibonac-
cilkcle.html)
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A latiice s an infinite
array of points, spaced
so that any point can
be shifted onte any
other point in the
iattice by the arrange-
ment of symmetry.
The points defined by
the xy-coordinates of
integers In a Carteslan
plane is an example of
a lattice. Among other
types of lattices are
those found in crystal-
lography:

Tiling in mathematics is
also called tessellating,
which is covering a
plane with a particular
shape or shapes so
that no gaps are left,
The diagrams show
how congruent  equi-
lateral triangles, squares
or hexagons can be
used to tile a v_msmﬂ
such as a floon The
vertices match per
fectly leaving no holes.

Here is how
squares and
octagons
can cover a
floon




MATH STUFF

These  exampies are
known as regular periodic
tilings, here the design
repeats on a regular basis
as the eye maves vertically
or horizontally. A pattem

is not repeated in non-
periodic  tilings.  For
example, consider tiling
. with stag-
N gering
7
! \H squares.
: One of
the most

famous nonperiodic set of
tiles is  the

Penrose  tles, Dm \
composed of

just two shapes, a dart and

a kite. Penrose tiles
possess  a  type of

symmetry called fivefold
{rotational) symmetry which
means a tiling pattern can
be matched up to another
on the plane after it is
rotated /5 of the way
around, as can be done
with a pentagram. Penrose
tiles also have tenfold
symmetry.

Two flat objects are sym-
metrical to one another if
they can be made to
match up when they are

T

In 1997 he was commissioned® to design the
Democracy Steps for Cedar Falls, Ohio. He
specifically designed the descending
pathway of steps, which reflects mathemati-
cal principles of the Fibonacci sequence and a
one-dimensional Penrose lattice, so they
would lead to one of Ohio’s most beautiful
waterfalls. The individual steps are varied so
that the walker alternates the leading foot
and establishes a comfortable rhythm,
Hizume designed Democracy Steps to be as
effortless as possible, thereby making it
feasible for almost any walker to experience
art in a public space. In addition, Democracy
Steps lets the walker focus on and enjoy the

Democracy Steps, ©1997 Aklo Hizume
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ﬁn_amn,mm & the works of Akio Hizume

Hizume's BAMBOO HENGE No.5. © 1998 Akio Hizume.
Nakano, Tokyo, Japan, Photo: T. Ninemiya,

natural surroundings of the walk rather than
having to concentrate on the effort or steps of

the walk. _

In his works of :ﬁmsp.o-manrwmngnm:\ Hizume
draws on such mathematical ideas as Penrose
tiling. His design illustrates an experimental
city. Hizume feels “there is an essential power in
architecture fo educate people and to create more
freedom in and for them., Many museums are recti-
lineqr, with square rooms, and exhibits are arranged
chronologically. However, in neurc-architecture,
linear paths do not exist; people can access its spaces
tandomly: They may, at first, become confused and

perhaps even get lost within neuro-architecture, but -

47

efther reflected about a
line, rotated about a
paint, or translated
(moved) or dlided in
particuar direction,

Quasi-crystals  were dis-
covered in 1982, Untll
this time, all crystals
were considered perio-
dic, iLe. composed of a
pericdic arrangerment of
identical polyhedron
buiiding blocks, and were,
considered a 3-D perio-
dic tiling. In 1982 chamist
Danie! Shechtmann
found a way to produce
a carystal that did not
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can only see the [ peuro- erchitecture AKIO HIZUME 1995

ﬁﬁg AS] .._Goml@ ) @e
28 h
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: ®

.
But we can Lve there “ @mwv o
essentially. "6 [agA @
Viewed from over- 5 %WW

U vaa iaby .
G4 w1kt R snats
prpteRp o
“ira g

head one sees the &
T e | (BN
quasi-periodic & w0y
floor plan in its |lg B
shapes, and from | E ¥ GROUNDE FLOOR PLAN )

the side one gsenses | MNeuro-architecture (ground floor plan), @ 1995 Akio Hizume.
. ] . ink and pencil on paper 200x300 mm
its various dimen- . ‘

sions. Although : problem Fibonacci posed in his
the feeling of such space may initially | book Liber Abaci in 1202, Mathe-

canse some disorientation, Hizume | Maticians have repeatedly found
this sequence of numbers

belleves the overall effect will popping Up in mature, art, and
enhance the working of one’s mind. | music, Fach successive number of -
His interests, fascination, and passion | the sequence is generated by E
with forms found in nature, mathe- | 29ding the two previous A

. . numbers, The golden mean s
matics, music and ert all meld and | concealed in the Fibonacci

Goetheanum 3 axonometric projectiops, exterior. €1990 Aldo Hizume. ink on paper 4! 5x580 mm,

have 34, or é-fold symmetry | as they become more familiar with it, their
periodic tiling. In 9B yninds will become educated and more
physicist  Paul  Steinhardt : , .

verified that these nonperiodic advanced....In a sense, neuro-architecture is a
crystals  possessed 5-fold | fwo-dimensional arrangement of the one-

symmetry, and he called them | dimensional Democracy Steps”S- As he
quasi-crystals. ;

have a profound influence on his ever | numbers, The ratio of two con-
m<mHS.ﬁm architectural shapes. secutive Fibonacd numbers get ,

: closer and closer to the value of g
the golden mean; in fact, its limit

1 mwm.u.nmmm whesite: HJHJU\\ is the WO_QES mean
homepage/ nifty.com/starcage/index.html

points out, Penrose lattices appear in
The golden mean (also called | nature so why not in architectural
the golden ratio and golden | designs. Utilizing one, two, and three-

section) is the point on a line ; . . .
segment,A B C creating dimensional Penrose-lattices as a grid

the folowing ratio (AC/AB) | Planming, he refers to them as'a “self-
=(ABBC). The golden mean | similar and quasi-periodic city” and the

appears  In many  shapes. | Goethegnum 3 monument as a “six
Among the most popular & ional” gt b Ty,
shapes in which it appears are imensiona gtructure because I

the golden rectangle (a golden | architecture was designed based on six equiv-
rectangle can then be formed | alent coordinate axes. It seems 10 be very com-
with slde AC and AB) and the | plicated in a 3D world, but is very simple in
pentagram.  The Fbonacci oo, ,
numbers 1,12,35813,... first | # 6D world. The coordinate system is a

appeared as a solution to a shadow (a projection) of 6D on 3D space. We

2 In1992 Hizume invented his 3-dimenslonal 6-axes self-supporting complex of
rods which he named starcage (Japan Patent Pending). At the Bamboo Giant
Nursery in Aptos, CA, one of Hizume's bamboo starcages can be seen balancing
on stilts high among the bamboo tree tops.

SHizume describes MU-MAGART as is self-complete, self-independent and
self-supporting, which can be enlarged so that as it is made wider it becomes
more symmetrical,

4The Hocking Hill State Park, Artists Organization o Columbus, Hocking
County Tourism Association, and Ohio University-Lancaster’s Wilkes Gallery
brought Hizume ot Ohio.

5 1bid, foomote 1.

5 From personal interview.
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.ﬁﬁwcxaﬁ_ﬁﬁ Hu_p.woﬂmnﬁﬁ one of the leading
mathematicians of the Middle
mm&:mw\m ce Ages, made contributions to
atithmetic, algebra and geome-
try. He was born Leonardo da
Pisa (1175-1250), son of an Ttalian customs officlal stationed at
Bugia (modern Bougie) in northerm Africa. His father's work
involved. travel to various Eastern and Arabic cities, and it was
in these regions that Fibonacci became familiarized with the
Hindu-Arabic decimal system, which had place value and used
the zero symbol. At this time Roman numerals were still being
used for calculating in Italy. Fibonaccl saw the value and beauty
of the Hindu-Arabic numerals, and was a strong advocate of
their use. In 1202 he wrote Liber Abaci, a comprehensive
handbook explaining how to use the Hindu-Arabic numerals;
how addition, subtraction, multiplication and division were per-
formed with these numerals; how to solve preblems; and
further discussion of algebra and geometry. Italian merchants
were reluctant to change their old ways; but through their con-
tinual contact with Arabs and the works of Fibonacci and other
mathematicians, the Hindu-Arabic system was introduced and
slowly accepted in Europe.

 Fibongcoi-sequence — 1

It seems ircnic that Fibonacci is famous today because of a
sequence of numbers that resulted from one obscure problem in
‘his book, Liber Abaci. At the time he wrote the problem it was
considered merely a menial exercise. Then, in the 19th century,
when the French mathematician Bdouard Lucas was editing a
four volume work on recreational mathematics, he attached
Fibonacci's name to the sequence that was the solution to the
problem from Liber Abaci. The problem from Liber Abaci that
generated the Fibonacci sequence is:

Lribonacci literally means son. of Bonacci.

1) Suppose a one month old pair of rabbits (male and
fernale) are too young to reproduce, but are mature
enough to reproduce when they are two months old.
Also agsume that every month, starting from the second
month, they produce a new pair of rabbits (male &
female).

2) If each pair of rabbits reproduces in the same way as
the above, how many pairs of rabbits will there be at
the beginning of each month? ’
EEpepair, mature enough to reproduce
CO=pair, too young to reproduce
no. of pairs
1=F1=1st Fib. no. @
1=F2=2nd Fib. no. &
2=F3=3rd Fib. no 7

N _
3=F4=4th Fib. no. %@7
5= I5=5th Fib. no. @ g ‘> "

Fach term of the Fibonacci sequence is the sum of the two
preceeding terms and is represented by the formula:
Fr=Fr.1tFp

Fibonacci did not study this resulting sequence at the time, and
it was not given any real mwmamnmﬂnm unti] the 19th century
when mathematicians became intrigued with the sequence, its
properties, and the areas in which it appears.

Fibonacci sequence appears in:
I. The Pascal triangle, the binomial formula & probability
II. the golden ratio and the golden rectangle

HI. nature and plants

IV. intriguing mathematical tricks
V. mathematical identities
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: ‘ extensively studied the
M..._DL. N.N\Nm QQ NQMN: proportions of the hu-

. man body. His drawing

m ec ﬁ.N o1 below has been studied
in detail, and shown to
illustrate the use of the golden section.] This is one of his draw-

ings in the book he illustrated for mathematician Luca Pacioli
called De Divina Proportione published in 1509.
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1 The term golden section is also referred to as the golden mean, the
golden ratio, the golden proportion . It is the geometric mean when it is
located on a given segment as follows. Point B sections off segment AC
50 that {| ACI /1 ABD=(| ABL /| BC!). The value of the golden mean
may be determined as, 1+y5 16

2 A B C

The golden section is also present in the unfinished work, St.
Jerome, by Leonardo da Vinci, painted around 1483, The figure
of 5t. Jerome fits perfectly into" a golden rectangle, as
superimposed on this drawing. It is believed that this was not
an accident, but that Leonardo purposely made the figure
conform to the golden section because of his keen interest and use
of mathematics in many of his works and ideas. In the words of
Leonardo —"...n0 human inguiry can be called science unless it
pursues its path through wmathematical exposition and
demonstration.”

St. Jerome. Leonardo da Vinct, Circa 1483




Pascal’s triangle, | B i rasca
. . © | (1623-1662) was
.&-N&m Hﬁw Q:Sﬁ_ﬁﬁ a famous French
mathematician
sequence & who might have
. . become one of
binomial formula| e gea man
. ematiciang if it
were not for his religious beliefs, poor health and unwillingness
to exhaust a mathematical topic. His father, fearing that his
son would share his keen interest in mathematics! and wanting
him to develop a broader educational background, initally dis-
couraged him from studying mathematics in order that he
might develop other interests. But by the age of twelve Pascal
‘showed such a gift for geometry that his mathematical incli-
nation was thereafter encouraged. IHe was very talented,
and at the age of sixteen he wrote an essay on conics that
surprised and astounded mathematicians. In his work was the
theorem that came to be known a Pascal's theorem, which
states in essence that opposite sides of a hexagon, which is
inscribed in a conic, intersect in three collinear points. At the
age of eighteen he invented one of the first calculating
machines. At this time he suffered from poor health, and made
a vow to God that he would give up his work in mathematics.
But three years later he wrote his work on the Pascal friangle
and its properties. On the night of November 23, 1654, Pascal
had a religious experience that prompted him to devote his
life to theology and abandon mathematics and science. Except
for one brief period (in 1658-1659), Pascal never studied
mathematics again.

Mathematics has a way of connecting ideas fhat appear
unrelated on the surface. So it is with the Pascal triangle, the

1ftienne Pascal, was very much interested in mathematics, and in fact
the curve limagon of Paseal is named after him rather than his son.

Fibonacei sequence and Newton's binornial formula. The Pascal
triangle, the Fibonacei sequence, and the binomial formula are
all interrelated. The design illustrates their relationships. The
sims of the numbers along the diagonal segments of the Hummn&
Embmm.. generate the Fibonacci sequence. Each row of the Pascal
triangle represents the coefficients of the binomial (a+b) raised to
a particular power.

For example,

a+b)0 =1 1
(a+b)! =1a + 1b 11
(a+b)2 = 1a2 + 2ab + 1b2 1 2 1

(a+b)3 =123 +3a2b +3ab? +10% 1 3 3 1

1 Fibonacci’s
2 Sequenece

Pascal’s
triangle

(a+ b= () @t (B @1 bt (B =267+t (GO

Newton's binomial formula



.H.ym golden rectangle is
a very beautiful and excit-

§mﬂc§m:
NNNQ.&.&H\N%.NN ing mathematical object,
Srmnrmxwmwmm@m%osm

the mathematical realm. Found in art, architecture, nature, and
even advertising, its popularity is not an accident. Psychological
tests have shown the golden rectangle to be one of the rectangles
most Emmmgm to the human eye.

Ancient Greek architects of the 5th century B.C. were aware of
-its harmonious influence. The Parthenon is an example of the
early architectural use of the golden rectangle. The ancient
Greeks had knowledge of the golden mean, how to construct it,
how to approxi-
mate it, and how
to use it to con-
struct the golden
rectangle.  The
golden  mean, o . ]
(phi), was not co- WHLMK;LBL : iy
incidentally the . _

first three letters

of Phidias, the fa-
mous Greek
sculptor. Phidias .
was believed to ThePartenon in Athens, Greece.

have used the

golden mean and the golden rectangle in his works. The society
of Pythagoreans may have chosen the pentagram as a symbol of
their order because of its relation to the golden mean,

Besides influencing architecture, the golden rectangle also
appears in art. In the 1509 treatise De Divina Proportione by Luca
Pacioli, Leonardo da Vinci illustrated the golden mean in the
make up of the human body. The use of the golden mean in art
has come to be labeled as the technique of dynamic symmetry.

Albrecht Diirer, George Seurat, Pietter Mondrian, Leonardo da
Vinci, Salvador Dali, George Bellows 2ll used the golden rectan-
gle in some of their works to create dynamic symmetry.

Bathers (1859-1891) by French impressionist George Seurat, There are three golden
rectangles shown, .

When the geometric mean is located on a given segment, AC, the
golden mean! is formed,
so that

(IACI/1ABI)=(IAB!/IBCI),

then | ABI is the golden mean,

also known as the golden section,

the golden ratio, or the golden proportion.

A B C

1To determine the value of the golden ratio, one must solve the
equation {1/x} = (x/(1-%)), where x=1AB{, | ACI=1, and IBC{=(1-x).
The golden ratio, | AC! /1 ABl or |ABI /IBCI comes out to be —
[{1+V5)/2]=1.6.




Once a segment has been divided into a golden mean, the golden
rectangle can easily be constructed as follows:

The golden rectangle is'also self-generating. Starting with golden
rectangle ABCD below, golden rectangle ECDF is easily made by
drawing square ABEF, Then golden rectangle DGHF is easily

IO S & _ .
“ I “ formed by drawing square ECGH. This process can be continued
! ! _ indefinitely.
W “ " ] E o il E c B G
1 ] I
1 I | H G MLl s
i 1 1 K[
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A B

Using the final product of these infinitely many golden rectan-
gles nestled in one another the equiangular spiral (also called the
logarithmic spiral) can be made. Using a compass and the squares
of these golden rectangles, make arcs which are quarter circles of
these squares. These arcs form the equiangular spiral.

1) Given any segment AC, with B dividing the segment
into a golden mean, construct square ABED.

2) Construct CF perpendicular to AC.
—3 e PR
8mxﬁmzn:.&lummoszgmdmmiﬁ.mmﬁm:ﬁmOmm_ﬁ

point F, Then ADFC is a golden rectangle.

NOTE:

The golden rectangle continually gener-
ates other golden reciungles and thus
outlines the equiangular spiral. The in-
tersection of the diagonals pictured is
the pole or center of the spiral.

A golden rectangle can also be constructed without already
having the golden mean, as follows:

D M C F

K
r
»
Il
x
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’
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() is the center of the spiral. &

s A radius of the spiral is q segment with
endpoints the cenfer O and any point

of the spiral,

]
2
[

1
I
I
|
[
t
1
1
1/
s
v
A E
N B

1) Construct any square, ABCD.

Notice that each tangent to the point of
the spiral forms an angle with that
point's radius, e.g. T1P10. The spiral is
an equigngular spiral if all such angles

2) Bisect the square with segment MN are congruent

3) Using a compass, make arc EC using center N and
radius [CNI.

—_—

4) Extend ray AB until it intersects the arc at point E.
L~
5) Extend ray DC.

6) Construct segment EF vmmw%s&namﬂ to segment AE,
and ray DC intersects ray EF at point ¥. Then ADFE is

a golden rectangle.

This is also called a logarithmic spival
because it increases at a geometric rate,
de. a power of some number and a .
power or exporient is another name for 5
logarithm.

The ma:u.aawm?w spiral is the only type of spiral that does not alter its
shape as it grows.
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Nature has many forms of packaging — squares, hexagons, cir-
cles, triangles. The golden rectangle and the equiangular spiral
are two of the most aesthetically pleasing forms, Evidence of the
equiangular spiral and the golden rectangle are found in starfish,
shells, ammonites, the chambered nautilus, seedhead arrange-
ment, pine cones, pineapples, and even the shape of an egg.

Equally exciting is how the golden ratio is linked to the Fibonac-
ci mmn.?mznm. The Hlimit of the sequence of ratios of consecutive
terms of the Fibonacei sequence — (1, 1, 2, 3,5, 8, 13, ...,
[Fo-1+Fnsl,...) —is the golden mean, 7 .
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Besides appearing in art, architecture and nature, the golden
rectangle is even used today in advertising and merchandising.
Many containers are shaped as golden rectangles to possibly
appeal to the public's aesthetic point of view. In fact, the
standard credit card is nearly a golden rectangle.

Yet the golden rectangle interrelates with other mathematical
ideas. Some of these are: infinite scrics, algebra, an inscribed
regular decagon, Platonic solids, equiangular and logarithmic
spirals, limits, the golden triangle, and the pentagram.

Hﬁ a broad senge flexagons can be
considered a type of topological
puzzle. They are figures made
from a sheet of paper, but end up
having a varying number of faces
which are brought to view by a
series of flexings,

Making a
Tri-Tetra
Flexagon

The object below is a called a a-ﬁ.,m@m flexagon. Tri stands for
the number of faces and tetra for the number of sides of the

object. A S
FRONT

._ | .m M step 1.
fold rﬁ.m\. M w w

F~fold here

BACK : w w M
N .m -_ woﬂﬂwwwma here

a#3is
concealed
M M here
tep 2.
step 3. Step
—
MNow on the front all 2's are shown and on the
M M back all 1's. .
To make the 3's appear flex along the vertical
crease.
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